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Abstract

The dynamic-stiffness matrix and load vector of a Timoshenko beam-column resting on a two-parameter elastic

foundation with generalized end conditions are presented. The proposed model includes the frequency effects on the

stiffness matrix and load vector as well as the coupling effects of: (1) bending and shear deformations along the member;

(2) translational and rotational lumped masses at both ends; (3) translational and rotational masses uniformly distributed

along its span; (3) axial load (tension or compression) applied at both ends; and (4) shear forces along the span induced by

the applied axial load as the beam deforms according to the ‘‘modified shear equation’’ proposed by Timoshenko. The

dynamic analyses of framed structures can be performed by including the effects of the imposed frequency (o40) on the

dynamic-stiffness matrix and load vector while the static and stability analyses can be carried out by making the frequency

o ¼ 0. The proposed model and corresponding dynamic-stiffness matrix and load vector represent a general solution

capable to solve, just by using a single segment per element, the static, dynamic and stability analyses of any elastic framed

structure made of prismatic beam-columns with semi-rigid connections resting on two-parameter elastic foundations.

Analytical results indicate that the elastic behavior of framed structures made of beam-columns is frequency dependent

and highly sensitive to the coupling effects just mentioned. Three comprehensive examples are presented to show the

capacities and validity of the proposed method and the obtained results are compared with the finite element method and

other analytical approaches.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The static, dynamic, and stability analyses of framed structures made up of beams and beam-columns under
any load conditions are of great importance in engineering. These analyses are treated in many textbooks
(Refs. [1–5] among many others) using different methods (continuous, lumped, matrix analysis, FEM, BEM,
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Nomenclature

ao,y,an coefficients of the Fourier series utilized
to describe the applied transverse load

Ag gross sectional area of the beam-column
As effective area for shear of the beam-

column ( ¼ kA)
Ap, Bp, Cp constants that define the particular

solution of differential Eq. (15)
b2;R2; s2;D2;F2; Q̄; x̄; S̄a; S̄b; J̄a; J̄b; m̄a; and m̄b -

dimensionless parameters
C1, C2, C3, C4 constants according to boundary

conditions [see Eqs. (35)–(38)]
E elastic modulus of the material
{FEF} loading vector, fixed-end forces and

moments in member AB due to external
applied load

G shear modulus of the material
I moment of inertia of the beam-column

cross section
Ja and Jb rotational inertia of the concentrated

masses at A and B, respectively
k effective shear factor of the beam-column

cross section
kS and kG two parameters of the elastic founda-

tion [ballast modulus kS, and transverse
modulus kG]

[K] dynamic-stiffness matrix of the beam-
column

L beam-column span
ma and mb lumped masses located at ends A and

B, respectively
m̄a and m̄b ratios of the lumped masses located at

ends A and B (¼ ma=m̄L and ¼ mb=m̄L),
respectively

m̄ mass per unit length of the beam-column
M bending moment
M̄ðx̄Þ bending moment parameter (dimension-

less)

P compression or tension axial load ap-
plied at the ends of the beam-column

q(x, t) applied transverse load [ ¼ Q(x)sinot]
r radius of gyration of the beam cross

section
R slenderness parameter ( ¼ r/L)
Ra and Rb stiffness indices of the flexural

connections at A and B, respectively
Sa and Sb stiffness of the lateral bracings at ends

A and B of the beam-column, respectively
t time
{U} vector of displacements and rotations
V shear force
V̄ ðx̄Þ dimensionless shear force
x coordinate along the centroidal axis of

the beam-column
y total lateral deflection of the centroidal

axis of the beam-column
Y(x) shape-function of the total lateral deflec-

tion of the centroidal axis of the beam-
column

Ȳ ðx̄Þ dimensionless shape-function of the total
lateral deflection of the centroidal axis

gs shear distortion
y slope due to bending of the centroidal

line of the beam-column
q2y
�
qt2 lateral acceleration of the centroidal axis

of the beam-column
q2y
�
qt2 angular acceleration of the centroidal

axis of the beam-column
Yðx̄Þ shape-function of the slope of the cen-

troidal axis of the beam-column due to
bending only

ka and kb stiffness of the flexural connections at
A and B, respectively (force� distance)

m Poisson ratio
ra and rb fixity factors at ends A and B of the

beam-column, respectively
o circular frequency
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etc.), and different theories (Bernoulli–Euler, Rayleigh, bending and shear, Timoshenko, modified
Timoshenko’s theory being the most common).

Timoshenko [6,7] was the first to analyze the simultaneous coupling effects between bending and shear
deformations, and between translational and rotational inertias in beams (that is why the term Timoshenko
beam has been widely utilized in the technical literature). Numerous studies have been carried out to
investigate these coupling effects. Cheng [8], for example, studied extensively the Timoshenko beam using
continuous models and matrix methods. Cheng and Tseng [9] and Cheng and Pantelides [10] developed the
dynamic matrix of the Timoshenko beam with applications to plane frames. Morfidis and Avramidis [11,12]
developed a generalized beam element on a two-parameter elastic foundation with semi-rigid connections and
rigid offsets. Timoshenko [6,7], Goodman and Sutherland [13], Huang [14], Hurty and Rubenstein [15]
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discussed the problem of the simultaneous coupling effects of bending and shear deformations and
translational and rotational inertias in the vibration of beams. Aristizabal-Ochoa [16] discussed the effects of
rotational inertia, axial force, shear deformations, and concrete cracking on the natural frequencies of large-
scale reinforced-concrete structural walls. Geist and McLaughlin [17] discussed the phenomenon of double
frequencies in Timoshenko beams at certain values of beam slenderness (L/r). Abbas [18] presented the
vibration analysis of Timoshenko beams with elastically restrained ends using the finite element method.

Kausel [19] proved that there are still some cases like the free–free and pinned–free shear beams that
invalidates the classical theory of Bernoulli–Euler and the classical shear wave equation. The classic solution
for the vibration of beams and beam-columns based on the Bernoulli–Euler theory (that neglects the combined
effects of shear deflections and rotational inertias along the member) violates the principle of conservation of
angular momentum even in slender beams. In addition, solutions obtained from methods (continuous,
lumped, matrix analysis, FEM, etc.), based on bending deformations only (i.e., neglecting the combined effects
of shear deflections and rotational inertias along the member) overestimate all natural frequencies of short
beams and the natural frequencies of the higher modes of slender beams as described by Weaver et al. [4].
Aristizabal-Ochoa [20] presented the complete free vibration analysis of the Timoshenko beam-column with
generalized end conditions including the phenomenon of inversion of vibration modes (i.e. higher modes
crossing lower modes) in shear beams with pinned–free and free–free end conditions, and also the
phenomenon of double frequencies at certain values of beam slenderness (L/r). Areiza-Hurtado et al. [21],
presented the static second-order stiffness matrix of beam-columns on a first-order elastic foundation which is
a particular case of the present study when the second-parameter of elastic foundation and the circular
frequency are set to zero.

As a consequence, there is a real need for a general matrix approach by which the static, dynamic, and
stability response of framed structures made up of beam-columns with any end conditions and supported on
elastic soils can be determined directly. The main objective of this publication is to derive the dynamic-stiffness
matrix and load vector of a Timoshenko beam-column resting on a two-parameter elastic foundation with
generalized end conditions. The proposed model includes the frequency effects on the stiffness matrix and load
vector as well as the coupling effects of: (1) bending and shear deformations along the member;
(2) translational and rotational lumped masses at both ends; (3) translational and rotational masses uniformly
distributed along its span; (4) axial load (tension or compression) applied at both ends; and (5) shear forces
along the span induced by the applied axial load as the beam-column deforms according to the ‘‘modified shear
equation’’ proposed by Timoshenko. The dynamic-stiffness matrix and load vector are programmed using
classic matrix methods to study the static, dynamic and stability behavior of framed structures made up of
beam-columns resting on two-parameter elastic foundations with semi-rigid end connections. Three
comprehensive examples are presented to show the capacities and validity of the proposed method.

2. Structural model

The proposed beam-column model is an extension of that presented by Aristizabal-Ochoa [20] including the
effects of a two-parameter elastic foundation defined by the ballast modulus kS and the transverse modulus kG

[22], and an applied external transverse load q(x, t) as shown in Fig. 1. The element is made of the beam-
column itself AB, the end flexural connections ka and kb (whose dimensions are given in force� distance/
radian), and the lateral springs or bracings Sa and Sb (whose dimensions are given in force/distance) at
A and B, respectively.

The ratios Ra ¼ ka/(EI/L) and Rb ¼ kb/(EI/L) are denoted as the bending stiffness indices of the flexural
connections at ends A and B, respectively. In addition, the ratios S̄a ¼ Sa=ðAsG=LÞ and S̄b ¼ Sb=ðAsG=LÞ are
denoted as the shear stiffness indices of the transverse connections at ends A and B, respectively. Both indices
Ra,b and S̄a;b allow to the analyst to simulate any end support condition applied to the beam-column. For
convenience the following two terms ra and rb [23,24] denoted as the fixity factors at A and B, respectively, are
utilized: ra ¼ 1=ð1þ 3=RaÞ, and rb ¼ 1=ð1þ 3=RbÞ.

It is assumed that the beam-column AB: (1) is made of a homogenous linear elastic material with moduli E

and G; (2) its centroidal axis is a straight line; (3) is loaded axially at the ends along its centroidal axis x with a
constant load P, and transversally along the span with an applied external transverse load q(x, t); (4) its
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Fig. 1. Structural model.

Fig. 2. Forces, moments, and deformations on the differential element.
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transverse cross section is doubly symmetric (i.e., its centroid coincides with the shear center) with a gross area
Ag, an effective shear area As ¼ kAg, and a principal moment of inertia I ¼ Agr2 about the plane of bending;
(5) has uniform mass per unit length m̄; (6) has two lumped masses attached at the extremes A and B of
magnitude ma and mb and rotational moments of inertia Ja and Jb, respectively; and (7) all transverse
deflections, rotations, and strains along the beam are small so that the principle of superposition is applicable.
3. Governing equations and general solution

The dynamic-stiffness matrix and loading vector of the beam-column just described above (Fig. 1) are
derived by applying the basic concepts of dynamic equilibrium on the differential element shown in Fig. 2 and
compatibility conditions at the ends of the member. The transverse and rotational equilibrium equations are:

qV

qx
¼ �m̄

q2y
qt2
� kSyþ kG

q2y

qx2
� qðx; tÞ (1)

and

qM

qx
¼ V þ m̄r2

q2y
qt2
� P

qy

qx
. (2)

From Fig. 2, the shear distortion can be expressed as

gs ¼ y�
qy

qx
(3)
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and according to the ‘‘modified shear approach’’ proposed by Timoshenko and Gere [1], the applied axial
force P induces a shear component equal to P sin y � Py. Then, the total shear across the section becomes
V�Py. Thus, the shear force equation is

V ¼ AsG y�
qy

qx

� �
þ Py (4)

and the bending moment equation is

M ¼ EI
qy
qx

. (5)

Substituting Eqs. (4) and (5) into Eqs. (1) and (2),

AsG
qy
qx
�

q2y
qx2

� �
þ P

qy
qx
¼ �m̄

q2y

qt2
� kSyþ kG

q2y
qx2
� qðx; tÞ, (6)

EI
q2y
qx2
¼ AsG y�

qy

qx

� �
þ Pyþ m̄r2

q2y
qt2
� P

qy

qx
, (7)

applying separation of variables to the functions y(x, t), y(x, t) and q(x, t):

yðx; tÞ ¼ Y ðxÞ sin ðotÞ, (8)

yðx; tÞ ¼ YðxÞ sinðotÞ, (9)

qðx; tÞ ¼ QðxÞ sinðotÞ (10)

and substituting into Eqs. (6) and (7), the following expressions are obtained:

ðAsG þ PÞ
dY
dx
� ðAsG þ kGÞ

d2Y

dx2
þ ðkS � m̄o2ÞY þQðxÞ ¼ 0, (11)

EI
d2Y
dx2
� ðAsG þ P� m̄r2o2ÞYþ ðAsG þ PÞ

dY

dx
¼ 0. (12)

Eqs. (11) and (12) represent the vertical and rotational dynamic equilibrium of the beam-column shown in
Fig. 1. These equations, which govern the elastic dynamic behavior of the beam-column, are second-order
differential equations coupled in Y and Y.

Notice that the vertical (or transverse) equilibrium represented by Eq. (11) apparently is not affected by the
rotational inertia m̄r2. This feature is used by most analysts in the classical solutions of the flexural beam
(Bernoulli’s theory) and shear beam (shear wave equation), violating the principle of conservation of angular
momentum as demonstrated by Kausel [19]. However, when the coupling effects between the bending and
shear deformations and also between the translational and rotational inertias along the beam are taken into
consideration, like the Timoshenko beam-column with generalized end conditions presented by Aristizabal-
Ochoa [20], the principle of conservation of angular momentum is fulfilled. As previously stated, this model is
capable to reproduce, as a special case, the non-classical modes of shear beams reported by Kausel [19],
including the phenomenon of inversion of vibration modes (i.e. higher modes crossing lower modes) in shear
beams with pinned–free and free–free end conditions, and also the phenomenon of double frequencies at
certain values of r/L for the beam.

Also, notice that when the shear deformations are neglected (i.e., when gs ¼ 0 or y ¼ qy/qx), any transverse
section of the member remains normal to the centroidal axis, and consequently Eqs. (11) and (12) become
uncoupled if the applied axial load P is zero. However, when the simultaneous effects of shear deformations
and axial load are taken into account, both the transverse deformation (y) and the slope of the centroidal axis
(qy/qx) increase. As a result, the shape-functions Y(x) and Y(x) of the transverse deflection and rotation of
any section become coupled making the solution more complex, particularly when the support conditions are
generalized, as it is considered in this publication.
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To facilitate the static, dynamic, and stability analyses of Timoshenko beam-columns supported on two-
parameter elastic foundation, which depend on 20 parameters (E, G, L, r, Ag, As, kS, kG, P, Q, m̄, o, ka, kb, Sa,
Sb, ma, mb, Ja, and Jb), the non-dimensional terms presented in Table 1 are introduced into Eqs. (11) and (12):

ð1þ F 2s2Þ
dY
dx̄
� ð1þD2

Gs2Þ
d2Ȳ

dx̄2
þ ðD2

Ss2 � b2s2ÞȲ þ Q̄ðx̄Þ ¼ 0, (13)

s2
d2Y
dx̄2
� ð1þ F 2s2 � b2s2R2ÞYþ ð1þ F 2s2Þ

dȲ

dx̄
¼ 0, (14)

where x̄ ¼ x=L and Ȳ ¼ Y=L. The complete differential equation for the dynamic equilibrium of a prismatic
beam-column is obtained by eliminating Y from Eqs. (13) and (14), as follows:

d4Ȳ

dx̄4
þ 2O

d2Ȳ

dx̄2
þ �Ȳ ¼

b2R2s2 � 1� F 2s2

s2ð1þD2
Gs2Þ

Q̄ðx̄Þ þ
1

ð1þD2
Gs2Þ

d2Q̄ðx̄Þ

dx̄2
, (15)

where

O ¼
b2s2 �D2

Ss2 þ b2R2 þ F2 þ F 4s2 þ b2s2R2D2
G �D2

G � F2s2D2
G

2ð1þD2
Gs2Þ

(16)

and

� ¼
b4R2s2 � b2D2

SR2s2 � b2
þD2

S � b2F2s2 þD2
SF 2s2

1þD2
Gs2

. (17)
Table 1

Dimensionless parameters

Parameter Description

b2 ¼
m̄o2

EI=L4

Frequency parameter

s2 ¼
EI=L2

AsG

Bending-to-shear stiffness parameter

F2 ¼
P

EI=L2

Axial-load parameter

R2 ¼
r2

L2

Slenderness parameter

D2
S ¼

kS

EI=L4

First-parameter of the elastic foundation

D2
G ¼

kG

EI=L2

Second-parameter of the elastic foundation

Q̄ðx̄Þ ¼
Qðx̄Þ

AsG=L

Applied transverse load parameter

V̄a ¼
V a

AsG
and V̄b ¼

Vb

AsG

End-shear force parameters

M̄a ¼
Ma

EI=L
and M̄b ¼

Mb

EI=L

End bending-moment parameters

Ra ¼
ka

EI=L
and Rb ¼

kb

EI=L
End flexural-connection indices

S̄a ¼
Sa

AsG=L
and S̄b ¼

Sb

AsG=L

End bracing indices

m̄a ¼
ma

m̄L
and m̄b ¼

mb

m̄L
End mass indices

J̄a ¼
Ja

m̄L3
and J̄b ¼

Jb

m̄L3

End rotational-mass indices
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The complete solution to Eq. (15), which is a fourth-order non-homogeneous linear differential equation
with constant coefficients, is made up of the homogeneous and the particular solutions as follows:

Ȳ ðx̄Þ ¼ Ȳ H ðx̄Þ þ Ȳ Pðx̄Þ, (18)

where the form of the homogeneous solution is: Ȳ H ¼ c emx̄. After substituting into Eq. (15), the following

polynomial is obtained: m4 þ 2Om2 þ � ¼ 0, whose solutions are m2 ¼ �O�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � �
p

or m ¼ �ib;�a, where

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � �

pq
(19)

and

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � �

pq
, (20)

thus, the homogeneous solution is

Ȳ H ¼ C1 sinðbx̄Þ þ C2 cosðbx̄Þ þ C3 sinhðax̄Þ þ C4 coshðax̄Þ. (21)

Note: If e40 the following changes must be made in Eq. (21): a for ia; sin a for sinh a; and cos a for cosh a
(where i ¼

ffiffiffiffiffiffiffi
�1
p

). These solutions are identical to those presented by Karnovsky and Lebed [25].
The particular solution that corresponds to the applied load and its second derivative [see Eq. (15)] is better

expressed in terms of a Fourier series as in Eq. (A.7) (see Appendix A).
After substituting Eq. (A.7) into Eq. (15), the particular solution is obtained:

Ȳ p ¼ Ap þ
X1
n¼1

Bp cosðnpx̄Þ, (22)

where

Ap ¼
Ao

�

ðb2R2s2 � F2s2 � 1Þ

s2ð1þD2
Gs2Þ

(23)

and

Bp ¼
An½b

2R2s2 � F 2s2 � s2ðnpÞ2 � 1�

s2ð1þD2
Gs2Þ½�� 2OðnpÞ2 þ ðnpÞ4�

. (24)

Finally, adding up Eqs. (21) and (22) the total lateral deflection becomes:

Ȳ ðx̄Þ ¼ C1 sinðbx̄Þ þ C2 cosðbx̄Þ þ C3 sinhðax̄Þ þ C4 coshðax̄Þ þ Ap þ
X1
n¼1

Bp cosðnpx̄Þ. (25)

The solution for Y can be obtained by differentiating Eq. (13) and substituting dȲ=dx̄ from Eq. (14) and its
derivatives, to obtain the following differential equation in terms of Y:

d4Y
dx̄4
þ 2O

d2Y
dx̄2
þ �Y ¼ �

1þ F2s2

s2ð1þD2
Gs2Þ

dQ̄ðx̄Þ

dx̄
, (26)

where O and e are given by Eqs. (16) and (17).
The complete solution to Eq. (26), which is again a fourth-order non-homogeneous linear differential

equation with constant coefficients, is as follows:

Yðx̄Þ ¼ C01 sinðbx̄Þ þ C02 cosðbx̄Þ þ C03 sinhðax̄Þ þ C04 coshðax̄Þ þ
X1
n¼1

Cp sinðnpx̄Þ, (27)

where the relationships between constants C1, C2, C3, C4, and C1
0, C2

0, C3
0, C4

0 are given by the following
expressions:

C01 ¼ �C2l, (28)
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C02 ¼ C1l, (29)

C03 ¼ C4d, (30)

C04 ¼ C3d, (31)

where

l ¼
b2ð1þD2

Gs2Þ � b2s2 þD2
Ss2

ð1þ F2s2Þb
, (32)

d ¼
a2ð1þD2

Gs2Þ þ b2s2 �D2
Ss2

ð1þ F2s2Þa
(33)

and

Cp ¼
Bp½b

2s2 �D2
Ss2 � ð1þD2

Gs2ÞðnpÞ2� � An

npð1þ F2s2Þ
. (34)

3.1. Shears, moments, deflections and rotations at the ends

In order to determine the stiffness matrix and load vector, the conditions at ends A and B of the beam-
column are evaluated following the sign convention for forces, moments, rotations and transverse deflections
shown in Fig. 3, as follows:
at x̄ ¼ 0:

V̄ a ¼ ðS̄a � m̄ab2s2ÞȲ ð0Þ þ ð1þ F 2s2ÞYð0Þ � ð1þD2
Gs2Þ

dȲ ð0Þ

dx̄
, (35)

M̄a ¼ �J̄ab2Yð0Þ �
dYð0Þ
dx̄

(36)

and at x̄ ¼ 1:

V̄ b ¼ ðS̄b � m̄bb2s2ÞȲ ð1Þ � ð1þ F 2s2ÞYð1Þ þ ð1þD2
Gs2Þ

dȲ ð1Þ

dx̄
, (37)

M̄b ¼ �J̄bb2Yð1Þ þ
dYð1Þ
dx̄

. (38)
Fig. 3. Sign convention (deflections, rotations, shear forces and moments).
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Eqs. (35)–(38) can be expressed in matrix form as follows:

fM̄g ¼ ½S�fCg þ fJg, (39)

where

fM̄g ¼

V̄a

M̄a

V̄b

M̄b

8>>>><
>>>>:

9>>>>=
>>>>;
, (40)

fCg ¼

C1

C2

C3

C4

8>>><
>>>:

9>>>=
>>>;
, (41)

fJg ¼

S̄a � m̄ab2s2
� �

Ap þ
P1
n¼1

BP

� �

�
P1
n¼1

CP npð Þ

S̄b � m̄bb2s2
� �

Ap þ
P1
n¼1

BP cosðnpÞ
� �

P1
n¼1

CPðnpÞ cosðnpÞ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(42)

and

½S� ¼

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

2
6664

3
7775 (43)

in which:

S11 ¼ ð1þ F 2s2Þl� bð1þD2
Gs2Þ; S12 ¼ S̄a � m̄ab2s2,

S13 ¼ ð1þ F 2s2Þd� að1þD2
Gs2ÞS14 ¼ S̄a � m̄ab2s2,

S21 ¼ �J̄ab2l; S22 ¼ lb; S23 ¼ �J̄ab2d; S24 ¼ �da,

S31 ¼ S̄b � m̄bb2s2
� �

sin b� ð1þ F2s2Þl cos bþ ð1þD2
Gs2Þb cos b,

S32 ¼ S̄b � m̄bb2s2
� �

cos bþ ð1þ F 2s2Þl sin b� ð1þD2
Gs2Þb sin b,

S33 ¼ S̄b � m̄bb2s2
� �

sinh a� ð1þ F2s2Þd cosh aþ ð1þD2
Gs2Þa cosh a,

S34 ¼ S̄b � m̄bb2s2
� �

cosh a� ð1þ F 2s2Þd sinh aþ ð1þD2
Gs2Þa sinh a,

S41 ¼ �J̄bb2l cos b� lb sin b; S42 ¼ J̄bb2l sin b� lb cos b,

S43 ¼ �J̄bb2d cosh aþ da sinh a; and S44 ¼ �J̄bb2d sinh aþ da cosh a.

Likewise, the displacements and rotations at A and B are:
at x̄ ¼ 0:

D̄a ¼ Ȳ ð0Þ, (44)
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raYa ¼ raYð0Þ þ
ð1� raÞ

3
M̄a (45)

and at x̄ ¼ 1:

D̄b ¼ Ȳ ð1Þ, (46)

rbYb ¼ rbYð1Þ þ
ð1� rbÞ

3
M̄b. (47)

Eqs. (44)–(47) can be expressed in matrix form as follows:

½H�fUg ¼ ½Z�fCg þ ½B�fM̄g þ fNg, (48)

where

½H� ¼

1 0 0 0

0 ra 0 0

0 0 1 0

0 0 0 rb

2
66664

3
77775, (49)

½B� ¼

0 0 0 0

0
1� ra

3
0 0

0 0 0 0

0 0 0
1� rb

3

2
6666664

3
7777775
, (50)

fUg ¼

D̄a

Ya

D̄b

Yb

8>>>><
>>>>:

9>>>>=
>>>>;
, (51)

fNg ¼

AP þ
P1
n¼1

BP

0

AP þ
P1
n¼1

BP cosðnpÞ

0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(52)

and

½Z� ¼

0 1 0 1

ral 0 rad 0

sin b cos b sinh a cosh a

rbl cos b �rbl sin b rbd cosh a rbd sinh a

2
66664

3
77775. (53)

The set of Eqs. (35)–(38) and Eqs. (44)–(47) represent the boundary conditions of the element by itself and
the compatibility conditions, respectively. These are necessary for the connectivity of members in frames and
continuous beams. The second-parameter of elastic foundation is shown in the boundary conditions given by
Eqs. (35)–(38) to consider the transverse modulus kG of the nearby soil. The spring constants Sa and Sb (and its
dimensionless parameters S̄a and S̄b, respectively) can be used to represent either a foundation constant
(e.g., settlement of foundation) or a lateral bracing of a beam-column element.
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From Eq. (39), {C} can be found as

fCg ¼ ½S��1fM̄g � ½S��1fJg (54)

and substituting {C} into Eq. (48), the vector of forces {M} is

fM̄g ¼ ½ZS�1 þ B��1½H�fUg þ ½ZS�1 þ B��1fZS�1J �Ng. (55)
3.2. Dynamic-stiffness matrix and load vector

The following reduced expression: fM̄g ¼ ½ZS�1 þ B��1½H�fUg is obtained when the transverse load is made
zero [i.e. q(x, t) ¼ 0] in Eq. (55), thus:

½K � ¼ ½ZS�1 þ B��1½H�. (56)

Notice that the square matrix [K] is the dynamic-stiffness matrix of the beam-column AB of Fig. 1, since it
relates the vector of end moments and shears fM̄g with the vector of end rotations and displacements {U}. The
dynamic-stiffness matrix [K] depends on the following input values: E, G, L, r, Ag, As, kS, kG, P, Q, m̄, o, ka,
kb, Sa, Sb, ma, mb, Ja, and Jb.

The load vector of the member AB consists of the equivalent bending moments and transverse shears
applied at the ends A and B such that the end rotations and displacements become zero. Thus, the load vector
obtained from Eq. (55) making {U} ¼ {0} is as follows:

fFEFg ¼ ½ZS�1 þ B��1fZS�1J �Ng (57)

and Eq. (55) can be expressed as

fM̄g ¼ ½K �fUg þ fFEFg. (58)

Notice that Eq. (58) is made up of the homogeneous solution [K]{U} and the particular solution {FEF}.
The complete solution to the beam-column of Fig. 1 includes the effects of: (a) end axial load P (tension
or compression); (b) uniformly distributed translational and rotational masses along the member;
(c) translational and rotational masses concentrated at the member’s ends; (d) uniformly distributed two-
parameter elastic foundation; (e) bending and shear deformations along the member; (f) generalized boundary
conditions (i.e., flexural and transverse connections at the ends of the member); and (g) generalized transverse
load. Appendix A presents the loading vector for the general case of trapezoidal load which is capable to
simulate the following particular cases: uniformly distributed load, triangular load as well as concentrated
force and moment.

3.3. Deflections, rotations, shears and bending moments along the member (dimensionless)

Once the end reactions are known, the lateral deflection Ȳ ðx̄Þ, total rotation Y(x), shear V ðx̄Þ and moment
M̄ðx̄Þ along the beam-column between 0pxpL can be calculated directly using the following equations:

Ȳ ðx̄Þ ¼ C1 sinðbx̄Þ þ C2 cosðbx̄Þ þ C3 sinhðax̄Þ þ C4 coshðax̄Þ þ Ap þ
X1
n¼1

Bp cosðnpx̄Þ, (59)

Yðx̄Þ ¼ lC1 cosðbx̄Þ � lC2 sinðbx̄Þ þ dC3 coshðax̄Þ þ dC4 sinhðax̄Þ þ
X1
n¼1

Cp sinðnpx̄Þ, (60)

V̄ ðx̄Þ ¼ fC1 cosðbx̄Þ � fC2 sinðbx̄Þ þ cC3 coshðax̄Þ þ cC4 sinhðax̄Þ

þ
X1
n¼1

½BpðnpÞ þ ð1þ F 2s2ÞCp� sinðnpx̄Þ, ð61Þ
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M̄ðx̄Þ ¼ �lbC1 sinðbx̄Þ � lbC2 cosðbx̄Þ þ daC3 sinhðax̄Þ þ daC4 coshðax̄Þ þ
X1
n¼1

CpðnpÞ cosðnpx̄Þ, (62)

where

f ¼ ð1þ F2s2Þl� b (63)

and

c ¼ ð1þ F2s2Þd� a. (64)
3.4. Evaluation of the ballast modulus kS and the transverse modulus kG

In order to determine the supporting soil parameters kS and kG, Vlasov and Leontiev [26] proposed the
following two expressions for rectangular beams:

kS ¼
Eobf

2ð1� m2oÞ
g
A
, (65)

kG ¼
Eobf

4ð1þ moÞ

A

g
, (66)

where

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ebf h3

ð1� m2oÞ
12ð1� m2ÞEobf

3

s
; Eo ¼

Es

1� m2s
; and mo ¼

ms

1� ms

.

Zhaohua and Cook [27] defined g as a variable of the foundation properties (a common practice is to
assume this value equal to 1). E and m are the elastic modulus and the Poisson ratio of the beam-column; Es

and ms are those of the supporting soil; and bf and h are the width and depth of the rectangular cross section.
The second-parameter of elastic foundation models an incompressible soil layer that resists only transverse
deformations and introduces shear interaction between the elements of the Winkler foundation.

Eqs. (65) and (66) were also utilized by Zhaohua and Cook [27] in the static analysis of rectangular beams
on two-parameter elastic soils.
Fig. 4. Example 1: (a) beam-column under trapezoidal load; and (b) degrees of freedom.
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Table 2

Parameters kS and kG of the elastic foundation of example 1

Soil type Modulus of elasticity (kN/mm2) Poisson ratio, mS kS (kN/mm2) kG (kN)

Dense sand 39.30 0.38 0.0120 5425.19

Sand and gravel 120.75 0.25 0.0298 14,680.94

Medium clay 31.05 0.35 0.0072 4989.08

L.G. Arboleda-Monsalve et al. / Journal of Sound and Vibration 310 (2008) 1057–1079 1069
4. Comprehensive examples and verification

4.1. Analysis of a beam-column resting on a two-parameter elastic foundation

For the rectangular beam-column resting on a two-parameter elastic foundation shown in Fig. 4, with Es

and ms of the supporting soil as suggested by Das [28], and kS and kG calculated using Eqs. (65) and (66) (see
properties listed in Table 2), and assuming that: E ¼ 12 kN/mm2 (12,000MPa); G ¼ 5 kN/mm2 (5000MPa);
Ag ¼ 2.5� 105mm2 (0.25m2); As ¼ 2.075� 105mm2 (0.2075m2); I ¼ 5.208� 109mm4 (5.208� 10�3m4); m̄ ¼

6� 107 Gg=mm (600 kg/m); L ¼ 6000mm (6m); ra ¼ 0.7; rb ¼ 0.3; Sa ¼ 15 kN/mm (15,000 kN/m);
Sb ¼ 25 kN/mm (25,000 kN/m); Qa ¼ 0.4 kN/mm (400 kN/m); Qb ¼ 0.2 kN/mm (200 kN/m); a0 ¼ 1500mm
(1.5m); b0 ¼ 5000mm (5m); and P ¼ 3000 kN (compression), determine:
(I)
 The static stiffness matrix and the loading vector of the beam-column as well as the vertical deflections,
rotations, shears and bending moments along the member. Study the effects of the transverse modulus kG

and compare the calculated results with those presented by Areiza-Hurtado et al. [21] [for the case of
dense sand: kS ¼ 0.012 (kN/mm2) and kG ¼ 0], and
(II)
 The natural frequencies of vibration of the beam-column. Study the effects of the frequency (o) of applied
dynamic trapezoidal load on the fixed-end moment at A.
Solution:
(I) Static analysis: The calculated static (i.e., o ¼ 0) stiffness matrix (whose units are given in kN and mm)

and loading vector for the particular case of dense sand [kS ¼ 0.012 kN/mm2 and kG ¼ 0] are:

K ¼

34:03 2:58 15081:83 �12:45

2:58 39:30 903:15 �5145:75

15; 081:83 903:15 31; 513; 789:69 942; 917:83

�12:45 �5145:75 942; 917:83 10; 807; 841:76

2
6664

3
7775; and FEF ¼

219:53 kN

152:58 kN

292; 740:02 kNmm

�95; 651:34 kNmm

2
6664

3
7775.

Using Eq. (58), the vertical deflections and bending moments at A and B are as follows:

Da

Db

( )
¼
�6:2

�3:5

� 	
mm and

Ma

Mb

( )
¼

196; 268:4

�77; 683:6

( )
kNmm:

The calculated static stiffness matrix and loading vector for the particular case of dense sand with
kS ¼ 0.012 kN/mm2 and kG ¼ 5425.19 kN are:

K ¼

35:37 2:23 14; 707:43 136:60

2:23 40:94 391:27 �4936:76

14; 707:43 391:27 32; 400; 215:85 889; 783:66

136:60 �4936:76 889; 783:66 10; 907; 525:20

2
6664

3
7775 and FEF ¼

240:20 kN

197:12 kN

275; 183:12 kNmm

�88; 655:01 kNmm

2
6664

3
7775.
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Fig. 5. Example 1: (a) deflection, (b) rotation, (c) shear force, and (d) bending moment. ( ) Sand and gravel (kS ¼ 0.0298 kN/mm2,

kG ¼ 14,681kN); ( ) sand and gravel (kS ¼ 0.0298 kN/mm2, kG ¼ 0); (—) dense sand (kS ¼ 0.012 kN/mm2, kG ¼ 5425.19 kN); (– – –)

dense sand (kS ¼ 0.012 kN/mm2, kG ¼ 0); (�) dense sand (after Areiza-Hurtado et al. [21]) (kS ¼ 0.012 kN/mm2, kG ¼ 0); ( ) medium

clay (kS ¼ 0.0072kN/mm2, kG ¼ 4989.1 kN); ( ) medium clay (kS ¼ 0.0072 kN/mm2, kG ¼ 0).
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Again, using Eq. (58), the vertical deflections and bending moments at A and B are as follows:

Da

Db

( )
¼
�6:5

�4:0

� 	
mm and

Ma

Mb

( )
¼

177; 469:72

�69; 710:55

( )
kNmm:

The calculated values for the transverse deflection Y(x), angle of rotation Y(x), shear force V(x), and
bending moment M(x) along the member are presented and compared with those presented by Areiza-
Hurtado et al. [21] in Figs. 5a–d. The proposed dynamic-stiffness matrix and load vector presented above
capture the second-order static stiffness matrix and load vector derived by Areiza-Hurtado et al. [21].

Figs. 5a–d also indicate that the elastic response of beam-columns on elastic foundations is strongly affected
by the type of soil, and in particular by the magnitude of its first-parameter kS. The calculated values of the
transverse deflections, rotations, shears, and moments along the member are slightly reduced when the
magnitude of the second-parameter kG is increased.

(II) Free vibration analysis: The natural frequencies of the beam-column of Fig. 4a can be determined using
Eq. (56) by making the determinant of the dynamic-stiffness matrix equal to zero. Table 3 shows the calculated
results of the first five natural frequencies (o) for two cases of elastic (dense sand) foundations. The calculated
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Table 3

Example 1: natural frequencies (Hz)

Mode of vibration Proposed method (dense sand) SAP 2000 [29] (a)/(c)

kS ¼ 0.012 kN/mm2 kG ¼ 0 kS ¼ 0.012kN/mm2 kG ¼ 5425.19 kN kS ¼ 0.012 kN/mm2 kG ¼ 0

(a) (b) (c)

1 25.64 25.88 25.77 0.9950

2 34.33 35.25 34.84 0.9854

3 54.84 57.06 56.50 0.9706

4 100.02 102.94 104.17 0.9602

5 168.37 171.37 175.44 0.9597
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results of the particular case when kS ¼ 0.012 kN and kG ¼ 0 are compared with those using the computer
program SAP2000 [29] (modeled with 50 segments along the member). It is shown that the proposed method,
with just a single segment, compares well with the finite element formulation that generally requires a lot of
segments along the member to achieve an acceptable level of accuracy. In addition, most FEM programs like
the SAP2000 [29] do not have the capability to simulate the effects of the rotational inertia along the members.

The proposed method not only has the capability to evaluate the effects of the applied frequency on the
stiffness matrix, but also on the loading vector. Fig. 6 shows the variation of the moment at A with the applied
frequency parameter b for the particular loading case shown in Fig. 4a with foundation properties
kS ¼ 0.012 kN and kG ¼ 5425.19 kN/mm2. Notice that the value of the bending moment at end A (Ma)
increases as the frequency of the applied load approaches any undamped natural frequency of the beam-
column. When resonance conditions are reached, the values of the end moments and forces become infinity.

4.2. Steel frame supported by reinforced-concrete caissons and a beam-on-grade

Consider the plane frame shown in Fig. 7a made up of six members: two reinforced-concrete caissons (EC
and FD) rigidly connected by a beam-on-grade (CD) and members AB, CA and DB made of structural steel
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Fig. 7. Plane frame: (a) properties and applied loads; (b) model and degrees of freedom; (c) axial loads (stability analysis); and (d) nodal

loads (dynamic analysis).
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shape W14� 26 [with Ag ¼ 7.69 in2 (4961mm2); k ¼ 0.46; I ¼ 245 in4 (101.9767� 106mm4); E ¼ 30,000 ksi
(206,842.72MPa); G ¼ 11,540 ksi (79,565.50MPa); m̄ ¼ 56.32� 10�7 kip-s2/in2 (38.86 kg/m)]. The reinforced-
concrete members have: E ¼ 3770.8 ksi (25,998.75MPa) and G ¼ 1640 ksi (11,307.40MPa). The beam-on-
grade (CD) has a section 19.68� 19.68 in (500� 500mm), k ¼ 0.83 and m̄ ¼ 870� 10�7 kip-s2/in2 (600 kg/m).
Both caissons have a diameter of 39.37 in (1000mm); k ¼ 0.90 and m̄ ¼ 2734.34� 10�7 kip-s2/in2 (1886.88 kg/m).
Fig. 7b shows the structural model and the degrees of freedom at each joint. The supporting soil properties are
kS ¼ 0.3 kip/in2 (2.0684N/mm2) and kG ¼ 719.4 kip (3200 kN). Assume that the steel beam-to-column and
beam-on-grade-to-caisson connections are rigid (i.e., r ¼ 1, where r is the fixity factor defined previously).
However, the steel column-to-caisson connections are semi-rigid as shown by Fig. 7c and d. Determine:
(I)
 The nodal rotations and displacements caused by the static loads applied as shown in Fig. 7a assuming
that the connections at joints A–D are rigid (i.e., r ¼ 1). Study the effects of the second-parameter of soil
kG (varying its value as 0, 1000, 2000 and 3000 kip). Compare the calculated results for the particular case
of kG ¼ 0 with those obtained using the FEM computer program SAP2000 [29];
(II)
 the variation of the first-mode natural frequency with the magnitude of the applied compressive axial
load P (Fig. 7c) for the following values of r: 0, 0.25, 0.50, 0.75 and 1.0, respectively, and
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(III)
Table

Displa

Displa

D1

y2
D3

y4
D5

D6

D7

y8
D9

y10
D11

D12

y13
y14
D15

D16
the first five natural frequencies of the frame and the variation of the lateral displacement of joint 5 as the
frame is subjected to a lateral forced vibration F sin(ot) as shown by Fig. 7d. Compare the calculated
frequencies for the particular case of kG ¼ 0 and r ¼ 1 at connections C and D with those obtained using
the FEM computer program SAP2000 [29].
Solution:
In the dynamic analysis of the 2-D frame shown in Fig. 7a the axial translational inertia (along the

longitudinal axis) of each member is taken into consideration, and as a consequence, the dynamic-stiffness
matrix includes also two axial degrees of freedom (5 and 6) along the local x-axis at A and B, respectively (Fig.
3). Therefore, the complete dynamic-stiffness matrix of each member used in the analysis is as follows:

K ¼

K11 K12 K13 K14 0 0

K22 K23 K24 0 0

K33 K34 0 0

K44 0 0

Symm:
AE

L
�

m̄Lo2

2
�

AE

L

AE

L
�

m̄Lo2

2

2
6666666666664

3
7777777777775
. (67)
(I)
 Nodal rotations and displacements caused by the static loads (Fig. 7a), assuming that the connections at
joints A–D are rigid (i.e., r ¼ 1), are listed in Table 4 (for four values of kG), as well as the results using
the FEM computer program SAP2000 [29] for the particular case of kG ¼ 0. Notice that displacements
and rotations of nodes are reduced as the value of kG is increased, particularly at nodes C–F.
(II)
 The variations of the first-mode natural frequency with the magnitude of the applied compressive axial
load P (Fig. 7c) are shown in Fig. 8 for five different values of r (0, 0.25, 0.50, 0.75 and 1.0, respectively).
The natural frequencies are determined making the determinant of the dynamic-stiffness matrix of the
whole structure equal to zero. The critical axial load (Pcr) is found making zero the determinant of the
dynamic-stiffness matrix of the structure when o ¼ 0. The buckling loads are: for r ¼ 0, Pcr ¼ 216.76 kip
4

cements (in) and rotations (rad) of plane frame (static analysis)

cement or rotation kG ¼ 0 kip kG ¼ 1000 kip kG ¼ 2000 kip kG ¼ 3000 kip SAP2000 [29], kG ¼ 0 (a)/(e)

(a) (b) (c) (d) (e)

�0.2485 �0.2485 �0.2485 �0.2486 �0.2485 0.9999

�0.0067 �0.0067 �0.0067 �0.0066 �0.0067 1.0011

�0.2502 �0.2501 �0.2501 �0.2501 �0.2502 1.0000

0.0040 0.0040 0.0040 0.0040 0.0040 0.9984

0.8636 0.8408 0.8245 0.8123 0.8481 1.0182

0.8531 0.8303 0.8140 0.8018 0.8376 1.0185

�0.0169 �0.0169 �0.0169 �0.0170 �0.0169 0.9985

�0.0005 �0.0004 �0.0003 �0.0003 �0.0004 1.0642

�0.0157 �0.0157 �0.0156 �0.0156 �0.0157 1.0008

�0.0006 �0.0005 �0.0004 �0.0004 �0.0005 1.0444

0.1117 0.0987 0.0894 0.0825 0.0999 1.1189

0.1117 0.0987 0.0894 0.0824 0.0998 1.1189

�0.0004 �0.0003 �0.0003 �0.0002 �0.0004 1.0492

�0.0005 �0.0004 �0.0003 �0.0003 �0.0005 1.0361

�0.0442 �0.0311 �0.0218 �0.0148 �0.0473 0.9344

�0.0543 �0.0391 �0.0284 �0.0203 �0.0593 0.9153
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Fig. 8. Example 2: variation of the first-mode frequency with the magnitude of the applied compressive axial load P: ( ) r ¼ 0; ( )

r ¼ 0.25; ( ) r ¼ 0.5; ( ) r ¼ 0.75; and (—) r ¼ 1.

Table 5

Example 2: natural frequencies (Hz)

Mode Frequency (Hz) (PMa,

assuming r ¼ 1 at C and D,

and kG ¼ 0)

Frequency (Hz) (PMa,

assuming the r as shown in

Fig. 7d and kG ¼ 719.4 kip)

Frequency (Hz) (using

SAP2000 [29], assuming r ¼ 1

at C and D and kG ¼ 0)

(a)/(c)

(a) (b) (c)

1 4.587 4.519 4.638 0.989

2 5.516 5.526 5.599 0.985

3 5.890 5.703 5.981 0.985

4 8.754 7.257 8.780 0.997

5 24.866 25.213 25.063 0.992

aPM denotes proposed model.

0

10

20

-10

-20

1 3 4 5 6 7 8

Δ 5
 (

in
ch

es
)

Frequency (Hz)

4.519 Hz

5.526 Hz

5.703 Hz 7.257 Hz

2

Fig. 9. Example 2: variation of horizontal deflection (D5) with applied frequency (o).
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(964.19 kN); r ¼ 0.25, Pcr ¼ 382.63 kip (1702 kN); r ¼ 0.5, Pcr ¼ 554.07 kip (2464.6 kN); r ¼ 0.75,
Pcr ¼ 713.48 kip (3173.7 kN); and for r ¼ 1.0, Pcr ¼ 845.87 kip (3762.6 kN).
(III)
 Notice that: (1) as expected, the degree fixity at the base of the frame has a great effect on the buckling
load of the frame; and (2) the applied compressive axial load P reduces the natural frequency of the
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Table

Exam

Specim

F1

B1

B2

B3

B4

B5

R1

R2
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frame, particularly at low values of r at its base or connection with the caissons. However, this reduction
is not substantial for values of r40.75 and with the applied axial load P less than 0.50Pcr.
(IV)
 The first five natural frequencies of the frame in Fig. 7d are listed in Table 5. The variation of the lateral
displacement of joint 5 (D5) with the frequency (o) as the frame is subjected to the lateral force F sin (ot)
is shown in Fig. 9. As expected, D5 becomes infinity as the frequency of the applied force F reaches any of
the natural frequencies of the undamped frame (i.e., at resonance). It is important to emphasize two
features of the dynamic behavior of this frame: (1) for lower frequencies (lower than 2.5Hz), small
variations of the lateral displacement were computed; and (2) since the first four natural frequencies of
the frame are not too far apart from each other, the displacements varies rapidly from+N to �N as the
applied frequency varies from 4 to 8Hz.
4.3. Free vibration tests of reinforced-concrete cantilever walls

Determine the fundamental natural frequency for a series of R/C structural walls reported by Aristizabal-
Ochoa [16] whose properties are listed in Table 6. Also, calculate the first three modes of vibration for
specimen F1 and compare the results with those using SAP2000 [29]. The model used for the walls is shown in
Fig. 10a. Assume that: Poisson ratio, m ¼ 0.15; L ¼ 4.57m; mb ¼ 1404.51 kg; and Jb ¼ 657.93 kgm2 for all
specimens.

Solution:
The structural model and degrees of freedom are shown in Fig. 10(b). Table 7 lists both the measured

(experimental) and calculated fundamental frequencies for all eight walls according to: (a) the proposed
6

ple 3: properties of R/C cantilevered walls (after Aristizabal-Ochoa [16])

en I (m4) Ag (m2) m̄ (kg/m) k E (MPa)

0.193 0.359 861.6 0.52 25,424.1

0.139 0.317 760.8 0.58 28,111.2

0.139 0.317 760.8 0.58 28,938

0.139 0.317 760.8 0.58 27,284.4

0.139 0.317 760.8 0.58 28,249

0.139 0.317 760.8 0.58 27,353.3

0.058 0.193 463.2 0.83 27,766.7

0.058 0.193 463.2 0.83 26,802.1

Sa = ∞

2
1

mb , Jb

ρa = 1

Fig. 10. Example 3: (a) cantilever wall; and (b) structural model and degrees of freedom.



ARTICLE IN PRESS

Table 7

Example 3: fundamental frequency (after Aristizabal-Ochoa [16])

Specimen Fundamental frequency (Hz) (a)/(b)

Measured (experimental) Calculated (proposed method) Calculated [16] Calculated [29]

(a) (b) (c) (d)

F1 33.80 33.78 33.90 34.14 1.00

B1 30.00 32.19 32.20 32.46 0.93

B2 29.40 32.66 32.70 32.89 0.90

B3 29.70 31.72 31.70 31.94 0.94

B4 29.20 32.27 32.30 32.47 0.90

B5 30.10 31.76 31.80 32.05 0.95

R1 21.80 23.86 23.80 24.10 0.91

R2 17.80 23.44 23.40 23.64 0.76

Table 8

Example 3: first, second and third natural frequencies of wall F1

Model Proposed model (including

rotational inertia along

the wall)

Proposed model (excluding

rotational inertia along

the wall)

SAP2000 [29] (excludes

rotational inertia along

the wall)

(a)/(c) (b)/(c)

(a) (b) (c)

1 33.78 34.21 34.25 0.99 1.00

2 141.01 148.63 149.25 0.94 1.00

3 285.45 307.73 312.50 0.91 0.98

1

x

y

Fig. 11. Example 3: modes of vibration of wall F1: ( ) first mode, proposed model; ( ) first mode, SAP2000 [29]; ( ) second

mode, proposed model; (—) second mode, SAP2000 [29]; ( ) third mode, proposed model; and ( ) third mode, SAP2000 [29].

L.G. Arboleda-Monsalve et al. / Journal of Sound and Vibration 310 (2008) 1057–10791076
method; (b) the method reported by Aristizabal-Ochoa [16]; and (c) the computer program SAP2000 [29]
(modeled with 50 segments along the member).

Table 8 shows the first three natural frequencies of specimen F1. As mentioned before, SAP2000 [29] does
not have the capability to simulate the effects of rotational inertia along the members, and consequently the
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values of the natural frequencies shown in Table 8 (column c) are larger than those obtained with the proposed
method including the rotational inertia along the member (column a) and very close to those listed in column b
excluding the rotational inertia along the member.

Fig. 11 shows the first-, second- and third-modes of vibration of specimen F1 calculated using the proposed
model with and without the effects of the rotational inertia along the wall and those calculated using SAP2000
[29]. These effects are not noticeable in the first mode, but they are in the higher modes. For instance, the node
of the second-mode of vibration moves up, the second node of the third-mode disappears, and the amplitudes
along the span are larger than those predicted by SAP2000 [29].
5. Summary and conclusions

The dynamic-stiffness matrix and load vector of a Timoshenko beam-column with generalized end
conditions and resting on a two-parameter elastic foundation are presented. The proposed model includes the
frequency effects on the stiffness matrix and load vector as well as the coupling effects of: (1) bending and
shear deformations along the member; (2) translational and rotational lumped masses at both ends; (3)
translational and rotational masses uniformly distributed along its span; (4) static axial load (tension or
compression) applied at both ends; and (5) shear forces along the span induced by the applied axial load as the
beam deforms according to the ‘‘modified shear equation’’ proposed by Timoshenko.

Analytical results indicate that the static, dynamic and stability behavior of framed structures made of
beam-columns are highly sensitive to the coupling effects just mentioned. The dynamic-stiffness matrix and
load vector are programmed using classic matrix methods to study the static, dynamic, and stability behavior
of framed structures made up of beam-columns with semi-rigid end connections and resting on two-parameter
elastic foundations.

The proposed model and corresponding dynamic matrix and load vector represent a general approach
capable to solve, just by using a single segment per element, the static, dynamic and stability analyses of any
elastic framed structure made of prismatic beam-columns with semi-rigid connections. For instance, the static
and stability analyses of framed structures under static loads can be carried out by making the problem
frequency (or time) independent or simply o ¼ 0. On the other hand, the dynamic and stability analyses of
framed structures under time-dependent loads are carried out including the effects of the imposed frequency
(o40) on the dynamic-stiffness matrix and load vector.

The proposed model and corresponding equations represent a general solution to solve the interactions
between the aforementioned 19 dimensionless parameters and indices in the static, dynamic and stability
analyses of any elastic prismatic beam-column with semi-rigid connections.

Three examples are presented that show the capacities and the validity of the proposed method along with
the dynamic-stiffness matrix and loading vector and the obtained results are compared with results from other
analytical methods including the finite element method.
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Appendix A. External load expressed in terms of Fourier series

The Fourier series for an arbitrary function Q(x) along the interval (�L, L) is as follows:

QðxÞ ¼
ao

2
þ
X1
n¼1

an cos
np
L

x

 �

þ bn sin
np
L

x

 �

, (A.1)
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where ao ¼ ð1=LÞ
R L

�L
QðxÞdx, an ¼ ð1=LÞ

R L

�L
QðxÞ cos ðnp=LÞx

� �
dx, and bn ¼ ð1=LÞ

R L

�L
QðxÞ sin ðnp=LÞx

� �
dx ¼ 0.

Notice that if the function Q(x) is symmetric about the origin then bn ¼ 0. The applied transverse load as a
function of x and t is

qðx; tÞ ¼
ao

2
þ
X1
n¼1

an cos
np
L

x

 �" #

sin wt, (A.2)

where ao ¼ ð2=LÞ
R L

0
QðxÞdx and an ¼ ð2=LÞ

R L

0
QðxÞ cos ðnp=LÞx

� �
dx, or in a dimensionless form:

qðx̄; tÞ ¼
ao

2
þ
X1
n¼1

an cosðnpx̄Þ

" #
sin wt, (A.3)

where ao ¼ 2
R 1
0

Qðx̄Þdx̄ and an ¼ 2
R 1
0

Qðx̄Þ cosðnpx̄Þdx̄.
For the particular case of a trapezoidal distributed load (dimensionless):

Qðx̄Þ ¼

0; 0px̄oā;

Qa þ
Qb �Qa

b̄� ā

� �
ðx̄� āÞ; āpx̄pb̄;

0; b̄ox̄p1;

8>>><
>>>:

(A.4)

where Qa ¼ QðāÞ, Qb ¼ Qðb̄Þ, ā ¼ a0=L, and b̄ ¼ b0=L. Solving the integrals of the Fourier coefficients for the
trapezoidal distributed load (A.4):

ao ¼ ðQa þQbÞðb̄� āÞ (A.5)

and

an ¼
2ðQa �QbÞ

ðnpÞ2ðb̄� āÞ
½cosðnpāÞ � cosðnpb̄Þ� þ

2

np
½Qb sinðnpb̄Þ �Qa sinðnpāÞ�, (A.6)

the transverse load can be expressed in dimensionless form as follows:

Q̄ðx̄Þ ¼ Ao þ
X1
n¼1

An cosðnpx̄Þ, (A.7)

where

Ao ¼
aoL

2AsG
, (A.8)

An ¼
anL

AsG
. (A.9)

Eqs. (A.1)–(A.9) can be used to model the following loads: (1) uniformly distributed load making Qa ¼ Qb;
(2) triangular distributed load making Qa ¼ 0 and Qb arbitrary; (3) concentrated load making b̄ ¼ āþ x and
Qa ¼ Qb ¼ Q=x as x! 0; and (4) concentrated moment at ā making b̄ ¼ āþ x and Qa ¼ �Qb ¼ 6M=x2 as
x! 0.
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